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Abstract
Lagrangian systems with nonholonomic constraints may be considered
as singular differential equations defined by some constraints and some
multipliers. The geometry, solutions, symmetries and constants of motion of
such equations are studied within the framework of linearly singular differential
equations. Some examples are given, in particular the well-known singular
Lagrangian of the relativistic particle, which with the nonholonomic constraint
v2 = c2 yields a regular system.

PACS numbers: 02.30.Hq, 45.50.Pk, 45.20.Jj
Mathematics Subject Classification: 34A09, 70F25, 70H45, 70G45, 37C80

1. Introduction

The main goal of this paper is to study the nonholonomic mechanical systems within the
framework of linearly singular differential equations.

Nonholonomic mechanical systems, i.e., mechanical systems with non-integrable
kinematic constraints, have been discussed since the last years of the 19th century. However,
the geometric foundations for the theory were given in [VF 72]. Since then, several approaches
have been taken to deal with the subject, for instance, a Hamiltonian approach in [BŚ 93], a
Lagrangian approach in [LM 96], a more general Poisson framework in [Mar 98], an approach
based on a gauge independent formulation of Lagrangian and Hamiltonian mechanics in
[MVB 02], or a model based on ideals of differential forms and distributions [KM 01, Kru 02].
Symmetries of these systems, as well as reduction schemes derived from them, have also been
considered in the literature, see [Koi 92, BKMM 96, KM 98, CL 99, Mar 03].

A Lagrangian system with nonholonomic constraints may be considered, more generally,
as a singular differential equation defined by some constraints and some multipliers:

ẋ = g(x) +
∑

µ

uµhµ(x), φα(x) = 0.
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Such an equation can be described geometrically as a linearly singular differential equation,
that is, a differential equation where the velocities are not isolated because of a linear factor
multiplying them:

A(x)ẋ = b(x).

This is a special type of implicit differential equation. The idea of modelling mechanical
systems as implicit differential equations is found in earlier papers by Tulczyjew [MT 78,
MMT 95], and it has also been used to deal with nonholonomic constraints [Tul 86, ILMM 96].

Linearly singular differential equations were geometrically presented in [GP 91, GP 92].
This general framework includes, for instance, the presymplectic systems and the Lagrangian
formalism, the higher-order singular Lagrangians and their ‘higher-order differential equation’
conditions, as well as many other systems that appear in technological applications—see some
references in [GMR 04]. To solve the corresponding equation of motion, a consistency
algorithm can be performed. This algorithm is indeed a generalization of the presymplectic
constraint algorithm [GNH 78].

We will see that a system with constraints and multipliers, and in particular any
nonholonomic mechanical system, can be described as a linearly singular system. This implies
that all the methods and results about these systems can be applied directly to nonholonomic
systems.

More precisely, the combination of two operations that can be performed on linearly
singular systems—restriction to a subsystem and projection to a quotient—can be applied
to obtain what we call a generalized nonholonomic system. In particular, we discuss the
regularity, consistency and equations of motion of these derived systems.

The symmetries of a linearly singular differential equation have been studied in [GP 02].
In this paper, we consider the relation between the symmetries of a system with nonholonomic
constraints and the symmetries of its original unconstrained system, both modelled on linearly
singular differential equations. We also study their constants of motion.

The paper is organized as follows. In section 2 we give some definitions and results
regarding linearly singular differential equations, their solutions and their symmetries. In
section 3 we introduce generalized nonholonomic systems and discuss some of their properties.
Symmetries and constants of motion of generalized nonholonomic systems are discussed in
section 4. In section 5 we show how a Lagrangian system with nonholonomic constraints
can be described in terms of a generalized nonholonomic systems. The case of a relativistic
particle is studied in section 6, where we see that a nonholonomic constraint can convert a
singular Lagrangian into a regular system. Two additional examples are studied in section 7.
Finally, an appendix contains some auxiliary results formulated within the framework of linear
algebra.

2. Previous results: linearly singular systems

In this section we recall some definitions and results from [GP 91, GP 92, GP 02].
Let M be a manifold. An implicit differential equation on M is defined by a submanifold

D ⊂ TM . A path ξ : I → M is a solution of this equation when

ξ̇ (I ) ⊂ D. (2.1)

In coordinates, if the submanifold D is described by some equations F = 0 and the path ξ

is represented by some functions x(t), then the local expression of the implicit differential
equation is F(x, ẋ) = 0.
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We have a particular case when D = X(M), with X a vector field on M. Then X defines
an explicit differential equation, and ξ is a solution iff

ξ̇ = X ◦ ξ. (2.2)

Now the local expression is ẋ = f (x).
A linearly singular differential equation on M is defined by a vector bundle π : F → M ,

a vector bundle morphism A: TM → F and a section f : M → F of π . A path ξ : I → M is
a solution when

A ◦ ξ̇ = f ◦ ξ, (2.3)

whose local expression is A(x)ẋ = f (x), with A(x) a (singular, in general) matrix.
We denote by (A: TM → F, f ) the linearly singular system. The following diagram

shows all these data:

I M

TM

�ξ
�

�
�

���
ξ̇

�

τM

F

�
�

�
���

π

�
�

�
���

f

�A

The associated implicit differential equation is

D = A−1(f (M)) ⊂ TM. (2.4)

We say that the linearly singular differential equation is regular when A is a vector bundle
isomorphism. In this case, the associated explicit differential equation is given by the vector
field X = A−1 ◦ f .

The solutions of the system can be equivalently described as integral curves of vector
fields. Let us remark that, in general, the solutions are restricted to a submanifold S ⊂ M

because equation (2.3) may not have solutions passing through every point x ∈ M . Therefore,
the equation of motion can be written as an equation for a vector field X and a submanifold S:{

X tangent to S

A ◦ X �
S

f, (2.5)

where the notation �
S

means equality at the points of S.

A recursive algorithm can be applied to find the solutions of a linearly singular differential
equation. Its first step is to note that, in order that a solution passes through a point x ∈ M , it
is necessary that

f (x) ∈ Im Ax, (2.6)

so the solutions are necessarily contained in the primary constraint subset

M1 = {x ∈ M | f (x) ∈ Im Ax}, (2.7)

which will be assumed to be a closed submanifold. The tangency to M1 forces the initial system
to be restricted to (A1: TM1 → F1, f1), where A1 = A|TM1 , F1 = F |M1 and f1 = f |M1 . The
algorithm follows recursively, and under some regularity assumptions at each step, it ends
with a final constraint submanifold S such that f (S) ⊂ Im AS ; thus the system is consistent,
and the equation

AS ◦ X = fS (2.8)
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for a vector field X tangent to S has solutions. Given a particular solution X◦, the set of
solutions of (2.5) is X◦ + Ker AS .

We conclude this section by giving some definitions and results about symmetries. A
symmetry of a linearly singular system (A: TM → F, f ) is a vector bundle automorphism
(ϕ,�) of π : F → M such that

f = �∗[f ] := � ◦ f ◦ ϕ−1, A = �∗[A] := � ◦ A ◦ (Tϕ)−1. (2.9)

An infinitesimal symmetry of a linearly singular system (A: TM → F, f ) is an infinitesimal
automorphism (V ,W) of the vector bundle π : F → M such that its flow

(
Fε

V , F ε
W

)
is

constituted by local symmetries of the linearly singular differential equation. The last property
is equivalent to the following conditions:

Tf ◦ V = W ◦ f, TA ◦ V T = W ◦ A, (2.10)

which are the infinitesimal version of (2.9). Here V T denotes the complete lift of a vector
field to the tangent bundle.

3. Generalized nonholonomic systems

3.1. The geometric setting

Among the various operations that can be performed with a linearly singular system
(B: TN → G, g), we are especially interested in the subsystem defined on a submanifold
j : M ↪→ N , and the projection p: G → G/G′ to a quotient with respect to a vector subbundle
G′ ⊂ G :

N

TN

�

G

�
�

����
�

���
g

�B

M

TM

�

G|M
�

�
����

�
���

g|M

�B|TM

N

TN

�

G/G′

�
�

����
�

���
p ◦ g

�p ◦ B

Suppose that the original system admits solutions Y on a submanifold Nf ⊂ N . Then
the subsystem on M has solutions on the submanifolds of M ∩ Nf over which a solution Y
of the initial system is tangent. On the other hand, the quotient system has, in general, more
solutions than the initial system: if Z is any vector field on N tangent to Nf with values in
B−1(G′) then Y + Z is a solution of the quotient system on Nf ; there may also exist solutions
defined on a submanifold greater than Nf .

It is well known that the dynamics of systems with nonholonomic constraints is a mixture
of both constructions: the presence of some constraints, combined with a certain degree of
arbitrariness expressed through some multipliers. This combination may result advantageous:
though in general Y is not tangent to the submanifold M, it may happen that for some vector
fields Z in B−1(G′) one has solutions Y + Z tangent to M, or at least to a ‘big’ submanifold
of M.

In this paper we will call a generalized nonholonomic system the linearly singular system
(A: TM → F, f ) defined from (B: TN → G, g) by a constraint submanifold M ⊂ N and a
subbundle of constraint forces G′ ⊂ G|M as follows:

• F = (G|M)/G′,

• A = p ◦ B|M ◦ ◦
Tj and

• f = p ◦ g|M ,
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where p: G|M → (G|M)/G′ is the projection to the quotient, and
◦
Tj denotes the tangent map

of j with the image restricted to M. All this is shown in the following diagram:

M

TM

�

�
◦
Tj

M

TN |M

�

G|M

�
�

�
���

g|M

�B|M
F = (G|M)/G′�p

������������

f

�
A

3.2. Regularity and consistency

Before discussing the equations of motion, we want to study some general properties of the
generalized nonholonomic system (A: TM → F, f ), namely, whether A is surjective (we
will also say that the system is surjective) or bijective (the system is regular), or the equation
A ◦ X = f is consistent everywhere.

Let us denote

H = B−1(G′) ⊂ TN |M,

which is a vector subbundle whenever the morphism B has constant rank.

Proposition 1. With the preceding notation, the generalized nonholonomic system is surjective
iff

B(TM) + G′ = G|M.

Assuming that the original system is surjective, the nonholonomic system is surjective iff

TM + H = TN |M,

and it is regular iff in addition

TM ∩ H = {0}.

Proof. We want to decide whether A = p ◦ B|M ◦ ◦
Tj (the composition of an inclusion,

a morphism and a projection) is surjective or injective, and this is given by lemma 1 in the
appendix. �

The preceding result could also be refined in the case where B is injective, but this does
not seem so interesting. As an immediate consequence, we have

Corollary 1. Suppose that the original system is surjective (or, more particularly, regular).
Then the generalized nonholonomic system is regular iff

TN |M = TM ⊕ H.

These relations can be given in a more concrete form in terms of constraints and frames.
Consider a local basis (
µ)1�µ�m◦ of sections for the subbundle H ⊂ TN |M (they are vector
fields in N, but defined only on M). Consider also a set of a◦ constraints φα , linearly independent
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at each point, that locally define the submanifold M ⊂ N . Finally, consider the matrix

Dα
µ = 〈dφα|M,
µ〉 = 
µ · φα, (3.1)

whose elements are functions on M.

Proposition 2. With the preceding notation,

1. TM ∩ H = 0 iff rank
(
Dα

µ

) = m◦.
2. TM + H = TN |M iff rank

(
Dα

µ

) = a◦.
3. TM ⊕ H = TN |M iff

(
Dα

µ

)
is a square invertible matrix.

Proof. It is a consequence of lemma 3 in the appendix, since the dφα|M constitute a basis for
the annihilator of TM in (TN |M)∗. �

The connection of such a matrix with the notion of regularity and consistency of a
constrained system was already noted in [CR 93, LM 96].

3.3. Equations of motion

From the definition of the generalized nonholonomic system (A: TM → F, f ), it is clear that
a path ξ : I → N is a solution of the equation of motion iff it is contained in M and

B ◦ ξ̇ − g ◦ ξ ∈ G′. (3.2)

If some sections �ν constitute a frame for G′, then this equation can be written as

B ◦ ξ̇ = g ◦ ξ +
∑

ν

vν�ν ◦ ξ, (3.3)

for some multipliers vν(t).
In the same way, for a submanifold S ⊂ M and a vector field X on M tangent to S, the

equation of motion A ◦ X �
S

f can be written as

B ◦ X − g ∈
S

G′, (3.4)

where the equation must only hold on the points of S. This equation may also be written as

B ◦ X �
S

g +
∑

ν

vν�ν, (3.5)

for some multipliers vν(x).
Of course, we can apply the constraint algorithm to find the solutions of this linearly

singular system. However, there is an alternative way to solve the problem when the original
problem is regular, or at least consistent. Under this hypothesis, let Y be a vector field on N,
solution of the equation of motion of the linearly singular system (B: TN → G, g):

B ◦ Y = g.

(For most applications the original system is regular, and then the unique solution of this
equation is the vector field Y = B−1 ◦ g.)

Using Y , the equations of motion become

ξ̇ − Y ◦ ξ ∈ H (3.6)

for a path ξ in M, and

X − Y ⊂
S

H, (3.7)

for a vector field X on M that should be tangent to S.
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These equations can be expressed in a more concrete form in terms of the local basis (
µ)

of sections for the subbundle H ⊂ TN |M :

ξ̇ = Y ◦ ξ +
∑

µ

uµ
µ ◦ ξ, (3.8)

for some functions uµ(t), and

X �
S

Y +
∑

µ

uµ
µ, (3.9)

for some functions uµ on M.
Let us examine whether this last equation has solutions. The requirement for X of being

tangent to M is X · φα �
M

0, which reads∑
µ

Dα
µuµ + Y · φα �

M
0, (3.10)

where
(
Dα

µ

)
is the matrix defined by (3.1). From this it is clear that the generalized

nonholonomic system is regular iff the matrix
(
Dα

µ

)
is invertible on M, and in this case,

equation (3.10) directly determines the functions uµ that give the solution X expressed in
(3.9). More generally, the nonholonomic system has solutions if the matrix

(
Dα

µ

)
has rank a◦.

Geometrically, the decomposition TN |M = TM ⊕ H stated in corollary 1 has two
associated projectors P,Q. Writing Y = P ◦ Y + Q ◦ Y on M, the following result is clear:

Proposition 3. With the preceding notation, if the original system is consistent, with a
solution Y, and the generalized nonholonomic system is regular, with solution X, the latter can
be obtained as

X = P ◦ Y |M. (3.11)

Such projectors were studied, in the context of nonholonomic Lagrangian systems, in
[LM 96].

4. Symmetries and constants of motion

Let us consider a generalized nonholonomic system (A: TM → F, f ), obtained from a
linearly singular system (B: TN → G, g), by means of a restriction to a submanifold M ⊂ N

and a projection to the quotient p: G|M → (G|M)/G′, where G′ ⊂ G|M is a vector subbundle.
Recall the definitions of symmetry and infinitesimal symmetry given in section 2. Our

aim is to study the relation between the symmetries of the original linearly singular system
on N and the symmetries of the generalized nonholonomic system on M. In the following
proposition, we give sufficient conditions on a symmetry of the original system in order to
define a symmetry of the constrained system:

Proposition 4. Let (ψ,�) be a symmetry of (B: TN → G, g). Suppose that ψ leaves the
submanifold M ⊂ N invariant, and � leaves the subbundle G′ ⊂ G|M invariant. Then
(ϕ,�), where ϕ = ψ |M , and �: (G|M)/G′ → (G|M)/G′ is the map induced on the quotient
from �, is a symmetry of (A: TM → F, f ).

Proof. We have

A ◦ Tϕ = p ◦ B ◦ Tj ◦ T(ψ |M) = p ◦ B ◦ Tψ ◦ Tj

= p ◦ � ◦ B ◦ Tj = � ◦ p ◦ B ◦ Tj = � ◦ A,
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and

f ◦ ϕ = p ◦ g ◦ ψ |M = p ◦ � ◦ g|M = � ◦ p ◦ g|M = � ◦ f,

so the two conditions for being a symmetry are satisfied. �

We can obtain a similar result for infinitesimal symmetries by making use of their
infinitesimal characterization (2.10):

Proposition 5. Let (V , V̄ ) be an infinitesimal symmetry of (B: TN → G, g). Suppose that V

is tangent to the submanifold M ⊂ N , and V̄ is tangent to the subbundle G′ ⊂ G|M . Then
(U, Ū), where U = V |M and Ū : (G|M)/G′ → T((G|M)/G′) is the vector field induced on
the quotient from V̄ , is an infinitesimal symmetry of (A: TM → F, f ).

Proof. The proof runs as in proposition 4:

Tf ◦ U = Tp ◦ Tg ◦ V |M = Tp ◦ V̄ ◦ g|M = Ū ◦ p ◦ g|M = Ū ◦ f,

TA ◦ UT = Tp ◦ TB ◦ T(Tj) ◦ (V T )|TM = Tp ◦ TB ◦ V T ◦ Tj

= Tp ◦ V̄ ◦ B ◦ Tj = Ū ◦ p ◦ B ◦ Tj = Ū ◦ A. �

We now consider constants of motion. Suppose that the original system has a solution
Y ∈ X(N), and let us consider a function h ∈ C∞(N) such that Y · h = 0. Under which
conditions is h|M a constant of motion of the generalized nonholonomic system?

Suppose that both the original system and the nonholonomic system are regular, so that
TN |M = TM ⊕H ; let P be the projector to the first factor, which, according to proposition 3,
relates the dynamics of both systems as X = P ◦ Y . Then we have a simple characterization:

Proposition 6. With the preceding hypothesis, write X = Y − 
, where 
 is a section of
H ⊂ TN |M . Let h be a constant of motion of the unconstrained system. Then h|M is a
constant of motion of the generalized nonholonomic system iff 
 · h = 0.

Proof. It is straightforward:

X · h = (Y − 
) · h = Y · h − 
 · h.

(Note that Y and 
, considered as sections of TN |M , map functions on N to functions on M.)
�

5. Lagrangian systems with nonholonomic constraints

In this section we will show that the dynamics of a Lagrangian system with nonholonomic
constraints (the nonholonomic mechanics) falls into the class of generalized nonholonomic
systems of section 3.

We begin by considering a configuration manifold Q, its tangent bundle TQ and a
Lagrangian function L: TQ → R. The Lagrangian mechanics may be described as the
linearly singular system (ω̂L: T(TQ) → T∗(TQ), dEL).

TQ

T(TQ)

�

T∗(TQ)

�
�

����
�

���

dEL

�ω̂L
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Here EL is the Lagrangian energy and ωL is the Lagrange’s 2-form. Though we do not want
to dwell on these well-known objects, some properties of ωL and the vertical endomorphism
will be needed later, so let us briefly recall them. See [Car 90] for more details.

First, we have the vertical endomorphism J of T(TQ), whose kernel and image are the
vertical subbundle V(TQ). Its transposed morphism is an endomorphism tJ of T∗(TQ),
whose kernel and image are Sb(TQ), the bundle of semibasic forms. This is used to define
the Lagrange’s 1-form θL = tJ ◦ dL and 2-form ωL = −dθL on TQ.

From now on we consider the case of the Lagrangian being regular, which amounts to ωL

being a symplectic form. Then, it induces a vector bundle isomorphism ω̂L: T(TQ) →
T∗(TQ) mapping vertical vectors to semibasic forms, thus yielding an isomorphism

V(TQ)
∼=−→ Sb(TQ).

It is well known that the Lagrangian dynamics on TQ is described by the only vector field
XL solution of

ω̂L ◦ XL = dEL.

Note that it is a second-order vector field.
Now let us introduce the nonholonomic constraints, which define a submanifold

M
j

↪→ TQ of dimension m. We will consider only the case where this submanifold restricts
the velocities, not the configuration coordinates. In a more formal way, this is described by
the conditions given in the following proposition:

Proposition 7. Let M ⊂ TQ be a submanifold. The following conditions are equivalent:

1. The projection M → Q (restriction of the tangent bundle projection τQ: TQ → Q) is a
submersion.

2. (TM)� ∩ Sb(TQ)|M = 0.
3. The submanifold M ⊂ TQ can be locally described by the vanishing of some constraints

φi whose fibre derivatives Fφi are linearly independent at each point of M.
4. The submanifold M ⊂ TQ can be locally described by the vanishing of some constraints

φi such that the 1-forms �i = tJ ◦ dφi are linearly independent at each point of M.

In coordinates, these conditions mean that (∂φi/∂vk) has maximal rank.
Note that under the preceding conditions the image τQ(M) ⊂ Q is an open submanifold,

and so we can replace Q with this submanifold. So, from now on, we assume that the projection
M → Q is a surjective submersion.

Now, we will consider the following vector bundles:

TM ⊂ T(TQ)|M, (TM)� ⊂ T∗(TQ)|M,

G′:= tJ ((TM)�) ⊂ Sb(TQ)|M, H := ω̂−1(G′) ⊂ V(TQ)|M.

Suppose that M ⊂ TQ is defined by the vanishing of some independent constraints φi as in
the preceding proposition. Then (TM)� is spanned by the dφi |M . We denote by �i and 
i

their corresponding images in G′ (through tJ ) and H (through ω̂−1
L ). The following diagram

shows all these objects:

〈
i〉 = H ↪→

TM ↪→

←↩ G′ = 〈�i〉

←↩ (TM)� = 〈dφi |M〉

V(TQ)|M Sb(TQ)|M

T(TQ)|M T∗(TQ)|M

�ω̂

�ω̂

�

J

�

tJ

� �



1080 X Gràcia and R Martı́n

So we have two subbundles TM,H ⊂ T(TQ)|M . We have rank TM = m and
rank(TM)� = n − m; the conditions in proposition 7 also imply that rank H = rank G′ =
n − m.

Theorem 1. The nonholonomic mechanics defined by the Lagrangian L and the constraint
submanifold M ⊂ TQ is the generalized nonholonomic system defined from the Lagrangian
mechanics (ω̂L: T(TQ) → T∗(TQ), dEL) by the constraint submanifold M ⊂ TQ and the
subbundle of constraint forces G′ = tJ ((TM)�) ⊂ T∗(TQ)|M .

M

TM

�

�
◦
Tj

M

T(TQ)|M

� �
�

�
���

dEL|M

�ω̂|M T∗(TQ)|M � T∗(TQ)|M/G′

Proof. The equation of motion for a path ξ = γ̇ such that ξ(t) ∈ M is

ξ̇ = XL ◦ ξ +
∑

i

ui
i ◦ ξ. (5.1)

Instead, let us write the equations of motion for vector fields: according to (3.5), for a
second-order vector field X on TQ, tangent to M, the equation is

iXωL �
S

dEL +
∑

i

ui�i, (5.2)

or, according to (3.9),

X �
S

XL +
∑

i

ui
i. (5.3)

But in coordinates equation (5.2) reads

∂L

∂q
− d

dt

(
∂L

∂v

)
=

∑
i

ui ∂φi

∂v
,

which is the equation of motion of the nonholonomic mechanics defined from L and the
constraints—see for instance [Arn 88]. �

If, in addition to (TM)� ∩ Sb(TQ)|M = 0, we have TM ∩ H = 0, then T(TQ)|M =
TM ⊕H , and so there is a unique solution X of the equation of motion, which can be obtained
from Y through the projector to TM as described by proposition 3.

5.1. The case of a singular Lagrangian

The preceding method can be conveniently adapted if the Lagrangian is singular. Of course,
one cannot use the direct sum decomposition. However, the formulation of the nonholonomic
dynamics as a quotient system on a submanifold remains unchanged, except that the second-
order condition is not automatically satisfied by X and must be imposed as an additional
equation for it:

J ◦ X �
M

�TQ.
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This condition may be included in the equation of motion of the nonholonomic dynamics
in the same way as can be done with the Lagrangian dynamics, using the time-evolution
operator K of Lagrangian dynamics [BGPR 86, GP 89]. With it, the Lagrangian dynamics is
the linearly singular system

TQ

T(TQ)

�

TQ×FLT(T∗Q)

�
�

����
�

���
◦
K

�
◦
T (FL)

where FL: TQ → T∗Q is Legendre’s transformation (fibre derivative) of L. In terms of vector
fields, the Lagrangian dynamics is thus defined by the equation

T(FL) ◦ X � K.

Then, it is readily seen that the nonholonomic equation of motion can be written as

T(FL) ◦ X � K −
∑

i

uiϒφi . (5.4)

Here ϒφ is a certain vector field along FL, which is defined from the fibre derivative of a
function φ: T∗Q → R—see [GP 01] for details.

6. Relativistic particle with a nonholonomic constraint

In this section, we study the motion of a relativistic particle as a nonholonomic constrained
system. We will consider two possible Lagrangian functions, a regular one (deeply studied in
[KM 01]) and a singular one.

Let us consider a particle with mass m and charge e moving in spacetime. We model
spacetime as a four-dimensional manifold Q, endowed with a metric tensor g with signature
(1, 3). Suppose furthermore that the particle is subject to the action of an electromagnetic field
F = dA, where A ∈ �1(Q), and a potential U ∈ C∞(Q).

Recall that there are some relevant objects associated with the metric g, namely, the
isomorphism ĝ: TQ → T∗Q (we will denote X� = ĝ ◦ X)), the Levi-Civita connection ∇,
the differential forms θg = ĝ∗(θQ) ∈ �1(TQ) and ωg = ĝ∗(ωQ) = −dθg ∈ �2(TQ), the
energy Eg(uq) = 1

2g(uq, uq) ∈ C∞(TQ), and the geodesic vector field Sg , which satisfies
iSg

ωg = dEg . We denote v = √
2Eg .

We will study two different Lagrangian functions, namely

L1(uq) = −mcg(uq, uq)
1/2 − e

c
〈A(q), uq〉 − U(q),

and

L2(uq) = −1

2
mg(uq, uq) − e

c
〈A(q), uq〉 − U(q).

Forgetting the potential, L1 is the singular Lagrangian commonly used in relativistic mechanics
to describe a particle in an electromagnetic field; it is defined only on the open set of timelike
vectors of TQ. The Lagrangian L2 appears in [KM 01]. Our aim is to compare both systems,
and to introduce the nonholonomic constraint v2 = c2 to them.

The Lagrangians L1 and L2 have, respectively, associated Lagrange’s 1-forms θ1 =
−mc

v
θg − e

c
τ ∗
QA and θ2 = −mθg − e

c
τ ∗
QA; the Lagrange’s 2-forms are ω1 = −mc

v
ωg −
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c
v2 dv ∧ θg + e

c
τ ∗
QF and ω2 = −mωg + e

c
τ ∗
QF ; and the Lagrangian energies are E1 = U and

E2 = − 1
2mv2 + U .

The symplectic formulation of the equations of motion for the Lagrangians L1 and L2

are, respectively,

iXω1 = dE1, (6.1)

and

iXω2 = dE2, (6.2)

for second-order vector fields X. For any 2-form ω, we will also denote iXω by ω̂(X).
It is worth writing down the Euler–Lagrange equations of motion for a path γ , which are,

for Lagrangians L1 and L2,

mc

g(γ̇ , γ̇ )1/2

(
(∇t γ̇ )� − g(γ̇ ,∇t γ̇ )

g(γ̇ , γ̇ )
γ̇ �

)
+

e

c
iγ̇ F − dU = 0, (6.3)

and

m(∇t γ̇ )� +
e

c
iγ̇ F − dU = 0. (6.4)

Let us now consider equations (6.1) and (6.2).
As ω̂1 is not surjective, equation (6.1) could have no solutions. We denote by � = q̇i ∂

∂q̇i

the Liouville vector field, by T = q̇i ∂
∂qi the natural vector field along τQ and by ξ∨ the vertical

lift of a vector field ξ : TQ → TQ along τQ. We have that Ker ω1 = 〈�,�〉, where

� = Sg − ev

mc2
((iT F )�)∨. (6.5)

We can see that ω̂1
(

v
mc

(grad U)∨
) = dU − (

1
v2 iT dU

)
θg and that θg �∈ Im ω̂1. Therefore,

equation (6.1) has solutions if and only if iT dU = 0, that is, the potential U is constant, which,
in practice, is the same as taking U equal to 0.

Since � is a second-order vector field, in the absence of potential the solutions of
equation (6.1) are X1 = � + µ�, where µ is an arbitrary function. If, in addition, there
is no electromagnetic field, then the solutions are Sg + µ�, and their integral curves are
reparametrized geodesics.

On the other hand, equation (6.2) is regular, and its solution is

X2 = Sg +
1

m
(grad U)∨ − e

mc
((iT F )�)∨. (6.6)

This can be proved making use of the relations iZ∨ωg = −τ ∗
Q(Z�) for vector fields Z along τQ,

and iS(τ
∗
QF) = τ ∗

Q(iT F ). In this case, in the absence of electromagnetic field and potential,
the solutions are the geodesics of g.

Now we introduce the nonholonomic constraint

φ(uq) := g(uq, uq) − c2 = 0, (6.7)

which defines a submanifold M ⊂ TQ.
The subbundle of constraint forces is 〈tJ (dφ)〉|M = 〈θg〉|M , therefore, according to

equation (5.2), the equations of motion for both Lagrangians become

iXω1 �
M

dE1 + λθg (6.8)

and

iXω2 �
M

dE2 + λθg, (6.9)

for second-order vector fields X tangent to M.
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Note that if a path γ satisfies the constraint then it also satisfies the equation 0 =
d
dt

g(γ̇ , γ̇ ) = 2g(γ̇ ,∇t γ̇ ), so looking at equations (6.3) and (6.4) we realize that the two
constrained systems have the same equations of motion:m(∇t γ̇ )� +

e

c
iγ̇ F − dU = λγ̇ �,

g(γ̇ , γ̇ ) = c2.

(6.10)

The multiplier λ can be found by contracting the equation with γ̇ , which gives λ = − 1
c2 iγ̇ dU .

We are going to see this equivalence of the solutions of both Euler–Lagrange equations
by computing the solutions of equations (6.8) and (6.9).

First, let us analyse equation (6.9). From � · φ = 2v2 �
M

2c2 �= 0 and i�ω2 = mθg , it

follows that TM ⊕ ω̂−1
2 (〈θg〉|M) = (TQ)|M , so, by proposition 1, the system is regular. Its

solution is X = X2 + λ
m

�, where the multiplier λ is found by imposing that X is tangent to M:

0 = X · φ = X2 · φ +
λ

m
� · φ �

M

2

m
iT dU + 2

λ

m
c2. (6.11)

Therefore, the solution of the second system is

X = Sg +
1

m
(grad U)∨ − e

mc
((iT F )�)∨ − 1

mc2
(iT dU)�. (6.12)

Now, let us analyse equation (6.8). Since Y = 1
m

(grad U)∨ − 1
mc2 (iT dU)� is a vector

field tangent to M and ω̂1(Y ) �
M

dU − (
1
c2 iT dU

)
θg , the system is consistent.

We can see that

TM ∩ ω̂−1
1 (〈θg〉|M) = TM ∩ Ker ω̂1 = 〈�〉|M, (6.13)

so the system is not regular. Then, the solutions of the equation are Y +µ�. Since Y is vertical,
in order to be a second-order vector field the function µ must be equal to one, so the solution
is Y + � �

M
X, exactly the same as for the Lagrangian L2.

7. Examples

7.1. Example 1

Consider the differential equation on N = R2 defined by the vector field Y = ∂
∂x

+y ∂
∂y

. We re-
strict this system to a generalized nonholonomic one by means of the construction of section 3,
taking the submanifold M = R × {a} ⊂ N and the subbundle C = 〈

x ∂
∂x

+ ∂
∂y

〉 ⊂ TN |M .
In this case TN |M = TM ⊕ C and the projectors associated with this decomposition are

P:
∂

∂x
�−→ ∂

∂x
∂

∂y
�−→ −x

∂

∂x
,

Q:
∂

∂x
�−→ 0

∂

∂y
�−→ x

∂

∂x
+

∂

∂y
.

Thus X = P ◦ Y |M = (1 − ax) ∂
∂x

|M is the solution of the generalized nonholonomic system.
Let us study the infinitesimal symmetries of both systems. We can see that a vector

field V ∈ X (N) is an infinitesimal symmetry of the unconstrained system if it has the form
V = V 1(y e−x) ∂

∂x
+ exV 2(y e−x) ∂

∂y
, where V 1 and V 2 are arbitrary smooth functions.

On the other hand, since the constrained system is one dimensional, its infinitesimal
symmetries are the vector fields U = kX, with k ∈ R. Observe that, in principle, an
infinitesimal symmetry of Y does not lead to an infinitesimal symmetry of X by restriction to
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M, even when Y |M ∈ X(M). Nevertheless, if we also require that V T (C) ⊂ TC, then we
obtain V 1(t) = k(1 + a ln(t/a)) and V 2(t) = 0, so that actually V |M = k(1 − ax) ∂

∂x
|M is an

infinitesimal symmetry of X.

7.2. Example 2

Here we discuss an example of a particle with a nonholonomic constraint, due to Rosenberg
[Ros 77]. This example has been discussed in some papers about reduction, such as for instance
[BGM 96, BKMM 96, BŚ 93, CL 99]. Consider a particle moving in R3 with Lagrangian
function

L = 1
2 (ẋ2 + ẏ2 + ż2)

subject to the nonholonomic constraint

φ = ż − yẋ.

Using the notation of section 5, we have N = TR3, ωL = dx ∧ dẋ + dy ∧ dẏ + dz ∧ dż and
dEL = ẋdẋ + ẏdẏ + żdż, so the unconstrained dynamics is the well-known free dynamics
described by the vector field

XL = ω̂−1
L (dEL) = ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
.

The constraint submanifold is M = {ż = yẋ}, with tangent bundle

TM = Ker(dφ) =
〈

∂

∂x
,

∂

∂y
+ ẋ

∂

∂z
,

∂

∂z
,

∂

∂ẋ
+ y

∂

∂ż
,

∂

∂ẏ

〉∣∣∣∣
M

,

and the vector subbundle C ⊂ TN |M is

C = 〈
ω̂−1

L (tJ (dφ))
〉 =

〈
y

∂

∂ẋ
− ∂

∂ż

〉∣∣∣∣
M

.

Note that TN |M splits as TN |M = TM ⊕ C, so the only solution X of the constrained
Lagrangian system is the projection of XL|M to TM according to this decomposition:

X =
(

ẋ
∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
− yẏẋ

y2 + 1

∂

∂ẋ
+

ẏẋ

y2 + 1

∂

∂ż

)∣∣∣∣
M

.

We choose (x, y, z, ẋ, ẏ) as coordinates on M. With this system, the vector field X reads

X = ẋ
∂

∂x
+ ẏ

∂

∂y
+ yẋ

∂

∂z
− yẏẋ

y2 + 1

∂

∂ẋ
.

Now let us look for the symmetries and constants of motion of both systems. For the free
particle, the constants of motion are the functions g on N that are invariant by XL, XL · g = 0.
The solutions of this partial differential equation have the form G(ẋ, ẏ, ż, ẋy − ẏx, ẏz − ży),
where G is an arbitrary function with five variables. On the other hand, the infinitesimal
symmetries are the vector fields V that commute with XL, [V,XL] = 0. They are linear
combinations of the six vector fields ∂

∂x
, ∂

∂y
, ∂

∂z
, x ∂

∂x
+ ẋ ∂

∂ẋ
, y ∂

∂y
+ ẏ ∂

∂ẏ
and z ∂

∂z
+ ż ∂

∂ż
, with

constants of motion as coefficients.
For the constrained particle, the constants of motion (written in coordinates of M) have

the form

F
(
ẏ, ẋ

√
y2 + 1, ẏx − arcsinh(y)ẋ

√
y2 + 1, ẏz − ẋ(y2 + 1)

)
, (7.1)
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and the infinitesimal symmetries are linear combinations of the five vector fields

∂

∂x
,

∂

∂z
, ẋ

∂

∂x
+ ẏ

∂

∂y
+ yẋ

∂

∂z
− ẋẏy

y2 + 1

∂

∂ẋ
,

arcsinh(y)

ẏ

∂

∂x
+

√
y2 + 1

ẏ

∂

∂z
+

1√
y2 + 1

∂

∂ẋ
,

ẋ
(
y − arcsinh(y)

√
y2 + 1

)
ẏ2

∂

∂x
+

y

ẏ

∂

∂y
− ẋ

ẏ2

∂

∂z
− ẋy2

ẏ(y2 + 1)

∂

∂ẋ
+

∂

∂ẏ
,

with constants of motion as coefficients.
Finally, we can illustrate proposition 6, and show the relation between the constants of

motion of both systems. Consider a constant of motion g = G(ẋ, ẏ, ż, ẋy − ẏx, ẏz − ży) of
XL; its restriction to M will be a constant of motion of X iff Z · g = 0, where Z is the section
of C,

Z = XL|M − X = ẋẏ

y2 + 1

(
y

∂

∂ẋ
− ∂

∂ż

)∣∣∣∣
M

.

The condition implies that

g|M = H
(
ẏ,

√
ż2 + ẋ2, ż + ẏx − ẋy − arcsinh(ż/ẋ)

√
ż2 + ẋ2, ẏz − ży − ẋ

)
,

and we see that g|M coincides with (7.1).
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Appendix. Some lemmas about linear algebra

Here we collect some results about linear algebra on vector bundles that are needed in section 3.
These lemmas are stated and proved for vector spaces, but of course nothing changes essentially
if vector bundles are considered instead.

Lemma 1. Let f : E → F be a linear map between vector spaces, and E◦ ⊂ E and F◦ ⊂ F

vector subspaces. Denote j : E◦ → E the inclusion, p: F → F/F◦ the projection to the
quotient, and consider the composition f̄ = p ◦ f ◦ j . Then

1. f̄ is injective iff E◦ ∩ f −1(F◦) = {0}.
Assuming f injective, this also amounts to f (E◦) ∩ F◦ = {0}.

2. f̄ is surjective iff f (E◦) + F◦ = F .
Assuming f surjective, this also amounts to E◦ + f −1(F◦) = E.

3. When f is surjective, f̄ is bijective iff E◦ ⊕ f −1(F◦) = E.
When f is injective, f̄ is bijective iff f (E◦) ⊕ F◦ = F .
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Proof. First note that

Ker f̄ = E◦ ∩ f −1(F◦), Im f̄ = (f (E◦) + F◦)/F◦. (A.1)

These equalities are clear: the kernel is constituted by the vectors in E◦ mapped to F◦ by
f , and the image of a subspace F ′ ⊂ F by p is (F ′ + F◦)/F◦. This readily yields the first
assertions about injectivity and surjectivity.

Their equivalent formulations when f is injective (or surjective) can be proved using the
formulae for f (E1 ∩ E2) and f −1(F1 ∩ F2) (or for the sum), as well as f −1(f (E◦)) =
E◦ + Kerf , f (f −1(F◦)) = F◦ ∩ Im f .

Finally, the assertions about the bijectivity of f̄ are a trivial consequence of the other
ones. �

Remember that a linear equation f (x) = b is consistent iff b ∈ Im f . Now let us study
a linear equation on E◦ defined as in the preceding lemma by f̄ and the class of an element
b ∈ F .

Lemma 2. The linear equation f̄ (x) = b̄ is equivalent to the couple of equations
f (x) − b ∈ F◦, x ∈ E◦. It is consistent iff b ∈ f (E◦) + F◦; in this case the solution is
unique iff E◦ ∩ f −1(F◦) = {0}.

Finally, let E ⊂ G be a subspace of a vector space. Recall that the annihilator (or
orthogonal) of E is the subspace

E� = {γ ∈ G∗ | (∀x ∈ E)〈γ, x〉 = 0} ⊂ G∗.

This space has a close relationship with G/E. Indeed, the transpose map of G → G/E

defines a canonical isomorphism

δ: (G/E)∗ → E�,

such that, for α ∈ E� and z ∈ G, 〈δ−1(α), z + E〉 = 〈α, z〉.
Lemma 3. Let E,F ⊂ G be vector subspaces. Let (α1, . . . , αp) be a basis for the annihilator
E� ⊂ G∗, and (v1, . . . , vq) a basis for F. Consider the matrix D = (Di

j ) 1�i�p

1�j�q
with elements

Di
j = 〈αi, vj 〉. Then

1. E + F = G iff rank D = p.
2. E ∩ F = {0} iff rank D = q.
3. E ⊕ F = G iff D is square invertible.

Proof. Consider the linear map ε: F → G/E defined as the composition of the inclusion
F ↪→ G and the projection to the quotient G � G/E. It is clear that E + F = G iff ε is
surjective, and E ∩ F = {0} iff ε is injective, so the only thing to prove is that the given
matrix is the matrix D of ε in appropriate bases: the basis (vj ) for F, and the basis (ᾱi), the
dual basis of ᾱi = δ−1(αi), for G/E.

Then, if ε(vj ) = ᾱiD
i
j , we have Di

j = 〈ᾱi , ε(vj )〉 = 〈αi, vj 〉, which is what we wanted
to prove. �
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